收藏本站
《计算机应用》 2017年02期
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

基于多样化top-k shapelets转换的时间序列分类方法

孙其法  闫秋艳  闫欣鸣  
【摘要】:针对基于shapelets转换的时间序列分类方法中候选shapelets存在较大相似性的问题,提出一种基于多样化top-k shapelets转换的分类方法 Div Top KShapelet。该方法采用多样化top-k查询技术,去除相似shapelets,并筛选出最具代表性的k个shapelets集合,最后以最优shapelets集合为特征对数据集进行转换,达到提高分类准确率及时间效率的目的。实验结果表明,Div Top KShapelet分类方法不仅比传统分类方法具有更高的准确率,而且与使用聚类筛选的方法(Cluster Shapelet)和shapelets覆盖的方法(Shapelet Selection)相比,分类准确率最多提高了48.43%和32.61%;同时在所有15个数据集上均有计算效率的提升,最少加速了1.09倍,最高可达到287.8倍。
【作者单位】中国矿业大学计算机科学与技术学院;中国矿业大学安全工程学院;
【基金】:江苏省自然科学基金资助项目(BK20140192) 中国矿业大学青年科技基金资助项目(2013QNB16)~~
【分类号】:O211.61
【正文快照】:
0引言Shapelets是描述时间序列局部特征的子序列,是时间序列中一种微小的局部模式,具有高度的辨识性[1]。基于shapelets的时间序列分类方法,能够发现时间序列之间具有微小区别的局部特征,不仅分类精度高,对分类的结果也有很好的解释能力,已经成为时间序列领域一个重要的研究主

【相似文献】
中国期刊全文数据库 前10条
1 施久玉,杜金观;有限个状态时间序列的某些结果[J];应用数学学报;1990年01期
2 冯希杰;长江三峡及其邻区断裂活动时间序列[J];华南地震;1991年02期
3 王霞,郭嗣琮,刘淑娟;时间序列模糊滑动预测[J];辽宁工程技术大学学报(自然科学版);1999年03期
4 温品人;时间序列预测法的实际应用分析[J];江苏广播电视大学学报;2001年06期
5 许清海;混沌投资时间序列的嬗变[J];漳州师范学院学报(自然科学版);2003年01期
6 程毛林;时间序列系统建模预测的一种新方法[J];数学的实践与认识;2004年08期
7 高洁;长记忆时间序列适应性预测的应用[J];江南大学学报;2004年05期
8 高洁;孙立新;;长记忆时间序列的适应性预测误差的谱密度[J];统计与决策;2006年13期
9 杨钟瑾;;浅谈时间序列的分析预测[J];中国科技信息;2006年14期
10 李健;孙广中;许胤龙;;基于时间序列的预测模型应用与异常检测[J];计算机辅助工程;2006年02期
中国重要会议论文全文数据库 前10条
1 周家斌;张海福;杨桂英;;多维多步时间序列预报方法及其应用[A];中国现场统计研究会第九届学术年会论文集[C];1999年
2 马培蓓;纪军;;基于时间序列的航空备件消耗预测[A];中国系统工程学会决策科学专业委员会第六届学术年会论文集[C];2005年
3 卢世坤;李夕海;牛超;陈蛟;;时间序列的非线性非平稳特性研究综述[A];国家安全地球物理丛书(八)——遥感地球物理与国家安全[C];2012年
4 李强;;基于线性模型方法对时间序列中异常值的检测及证券实证分析[A];加入WTO和中国科技与可持续发展——挑战与机遇、责任和对策(上册)[C];2002年
5 戴丽金;何振峰;;基于云模型的时间序列相似性度量方法[A];第八届中国不确定系统年会论文集[C];2010年
6 谢美萍;赵希人;庄秀龙;;多维非线性时间序列的投影寻踪学习逼近[A];'99系统仿真技术及其应用学术交流会论文集[C];1999年
7 张大斌;李红燕;刘肖;张文生;;非线性时问序列的小波-模糊神经网络集成预测方法[A];第十五届中国管理科学学术年会论文集(下)[C];2013年
8 黄云贵;;基于时间序列的电网固定资产投资规模研究[A];2012年云南电力技术论坛论文集(文摘部分)[C];2012年
9 李松臣;张世英;;时间序列高阶矩持续和协同持续性研究[A];21世纪数量经济学(第8卷)[C];2007年
10 陈赫;罗声求;;历史横断面数据的时间序列化[A];科学决策与系统工程——中国系统工程学会第六次年会论文集[C];1990年
中国重要报纸全文数据库 前6条
1 ;《时间序列与金融数据分析》[N];中国信息报;2004年
2 何德旭 王朝阳;时间序列计量经济学:协整与有条件的异方差自回归[N];中国社会科学院院报;2003年
3 刘俏;让数据坦白真相[N];21世纪经济报道;2003年
4 西南证券高级研究员 董先安德圣基金研究中心 郭奔宇;预计6月CPI同比上涨7.2%[N];证券时报;2008年
5 东证期货 王爱华 杨卫东;两年涨跌轮回 秋季普遍下跌[N];期货日报;2009年
6 任勇郑重;中国对世界钢材价格的影响实证分析[N];现代物流报;2007年
中国博士学位论文全文数据库 前10条
1 张墨谦;遥感时间序列数据的特征挖掘:在生态学中的应用[D];复旦大学;2014年
2 张德成;滑坡预测预报研究[D];昆明理工大学;2015年
3 苗圣法;时间序列的模式检测[D];兰州大学;2015年
4 翁同峰;时间序列与复杂网络之间等价性问题及表征应用研究[D];哈尔滨工业大学;2015年
5 杨婷婷;用Argo浮标结合卫星观测估算北太平洋经向热输运[D];中国科学院研究生院(海洋研究所);2015年
6 史文彬;时间序列的相关性及信息熵分析[D];北京交通大学;2016年
7 原继东;时间序列分类算法研究[D];北京交通大学;2016年
8 卢伟;基于粒计算的时间序列分析与建模方法研究[D];大连理工大学;2015年
9 王晓晔;时间序列数据挖掘中相似性和趋势预测的研究[D];天津大学;2003年
10 李桂玲;时间序列的分割及不一致发现研究[D];华中科技大学;2012年
中国硕士学位论文全文数据库 前10条
1 陈健;基于多变量相空间重构的投资组合策略研究[D];华南理工大学;2015年
2 兰鑫;时间序列的复杂网络转换策略研究[D];西南大学;2015年
3 米晓将;区域尺度下月均气温的时空演化格局研究[D];昆明理工大学;2015年
4 张鸣敏;基于支持向量回归的PM_(2.5)浓度预测研究[D];南京信息工程大学;2015年
5 林健;基于改进小世界回声状态网的时间序列预测[D];渤海大学;2015年
6 曹智丽;日气温和干旱指数支持向量回归预测方法[D];南京信息工程大学;2015年
7 高雄飞;基于分形理论的土壤含水量时间序列特性分析[D];长安大学;2015年
8 姚茜;城市安全生产发展目标研究[D];中国地质大学(北京);2015年
9 谢翠颖;苏州社会消费品零售总额简析[D];苏州大学;2015年
10 包仁义;基于时间序列的搜索引擎评估模型算法研究[D];东北师范大学;2015年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026