用于文本分类的多核SVM算法研究
【摘要】:根据文本分类通常包含多异类数据源的特点,提出了多核SVM学习算法。该算法将分类核矩阵的二次组合重新表述成半无限规划,并说明其可以通过重复利用SVM来实现有效求解。实验结果表明,提出的算法可以用于数百个核的结合或者是数十万个样本的结合,对于多异类数据源的文本分类具有较高的查全率和查准率。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|