《Science China(Information Sciences)》 2018年04期

# Parameter estimates of Heston stochastic volatility model with MLE and consistent EKF algorithm

【摘要】：Heston model is the most famous stochastic volatility model in finance. This paper considers the parameter estimation problem of Heston model with both known and unknown volatilities. First, parameters in equity process and volatility process of Heston model are estimated separately since there is no explicit solution for the likelihood function with all parameters. Second, the normal maximum likelihood estimation(NMLE) algorithm is proposed based on the It?o transformation of Heston model. The algorithm can reduce the estimate error compared with existing pseudo maximum likelihood estimation. Third, the NMLE algorithm and consistent extended Kalman filter(CEKF) algorithm are combined in the case of unknown volatilities. As an advantage, CEKF algorithm can apply an upper bound of the error covariance matrix to ensure the volatilities estimation errors to be well evaluated. Numerical simulations illustrate that the proposed NMLE algorithm works more efficiently than the existing pseudo MLE algorithm with known and unknown volatilities. Therefore, the upper bound of the error covariance is illustrated. Additionally, the proposed estimation method is applied to American stock market index SP 500, and the result shows the utility and effectiveness of the NMLE-CEKF algorithm.

 【相似文献】
 中国期刊全文数据库 前10条
 1 许冰;;区域板块股票波动风险的概率相关与volatility差异[J];统计与决策;2005年21期 2 Bai-min YU;;Two Efficient Parameterized Boundaries for Vee's Asian Option Pricing PDE[J];Acta Mathematicae Applicatae Sinica(English Series);2012年04期 3 ;PRICING EUROPEAN OPTION IN A DOUBLE EXPONENTIAL JUMP-DIFFUSION MODEL WITH TWO MARKET STRUCTURE RISKS AND ITS COMPARISONS[J];Applied Mathematics:A Journal of Chinese Universities(Series B);2007年02期 4 ;Forecasting China′s Stock Market Volatility Using Non-Linear GARCH Models[J];Journal of Systems Science and Systems Engineering;2000年04期 5 庞素琳;邓飞其;王燕鸣;;A COMPARISON OF FORECASTING MODELS OF THE VOLATILITY IN SHENZHEN STOCK MARKET[J];Acta Mathematica Scientia;2007年01期 6 胡耀忠;MULTI-DIMENSIONAL GEOMETRIC BROWNIANMOTIONS, ONSAGER-MACHLUP FUNCTIONS, AND APPLICATIONS TO MATHEMATICAL FINANCE[J];Acta Mathematica Scientia;2000年03期 7 Tobias LIPP;Grgoire LOEPER;Olivier PIRONNEAU;;Mixing Monte-Carlo and Partial Differential Equations for Pricing Options[J];Chinese Annals of Mathematics(Series B);2013年02期 8 尤苏蓉;;On the No-arbitrage Principle and Option Pricing in a Fuzzy Market[J];Journal of DongHua University;2006年03期 9 ;Long memory and nonlinear dependence structure in crude oil futures returns and volatility[J];Journal of Southeast University(English Edition);2008年S1期 10 ;The Integration of Dual-Domain Method for Estimating the Volatility of Financial Assets[J];数学研究与评论;2010年03期
 中国重要会议论文全文数据库 前2条
 1 ;Multiresolution Wavelet Analysis Based Volatility Character of High Frequency SIGNAL[A];Proceedings of the Second Conference on Fuzzy Information & Engineering[C];2005年 2 应益荣;宫模恒;;Overconfidence:Expansion of the DHS Model in Futures Market[A];第二届中国智能计算大会论文集[C];2008年
 中国博士学位论文全文数据库 前2条