收藏本站
《光学学报》 2014年09期
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

基于潜在语义分析与NIR的中药材分类研究

陈晓峰  龙长江  牛智有  朱凯  
【摘要】:基于近红外光谱(NIR)和潜在语义分析(LSA)方法,对5种典型壮阳中药材进行分类鉴别研究。利用潜在语义分析对光谱预处理后的5种壮阳中药材光谱数据进行特征提取和鉴别分类后,将经光谱预处理和主成分分析(PCA)提取特征后的光谱特征数据分别带入K近邻(KNN)、BP神经网络(BP-ANN)和偏最小二乘支持向量机(LSSVM)三种典型的分类模型进行分类,并将结果与潜在语义分析模型结果进行对比。在4119.20~9881.46cm-1波数范围内,NIR光谱数据经多元散射校正(MSC)预处理后,代入潜在语言空间维数为3时所建立的LSA分类模型,训练集和测试集准确率均达到了100%。结果表明,在壮阳类中药材的近红外光谱分析鉴别中,潜在语义分析可以作为一种全新的提取光谱信息并分类的方法,具有较好的运用前景和实际意义。

手机知网App
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026