基于几何特征与新Haar特征的人脸检测算法
【摘要】:针对普通Adaboost算法训练时间长,对复杂背景下(暗光、多角度、多姿态等)人脸检测识别率较低的问题,提出了一种改进的结合肤色检测及几何特征的Adaboost算法。采用肤色粗检筛选出候选人脸区域,同时采用新的非对称的Haar特征来训练分类器,进一步加强检测性能,提升鲁棒性和复杂背景下的宽容度。实验将此算法应用到一个嵌入式系统中,结果表明:在各种复杂背景下的人脸检测中鲁棒性和宽容度均提升很多,误识率进一步降低,并且在嵌入式人脸检测的系统中具有很好的可移植性和实用性。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||
|
|
|||||||||||||||||||||
|