基于KPCA-LSSVM的公路软基路堤沉降预测
【摘要】:针对公路软基路堤沉降发生过程中多变量、强耦合、强干扰、大滞后的复杂特性,利用KPCA先将非线性数据投影到高维空间使其映射呈线性关系,应用PCA提取出映射数据的线性特征信息,间接实现去除原始数据噪声,以降低样本的维数,然后再利用最小二乘支持向量机进行建模的方法对软基路堤沉降进行预测。仿真结果表明:与最小二乘支持向量机及主元分析—最小二乘支持向量机建模方法相比,该核主元分析与最小二乘支持向量机结合的方法能够更准确地预测路堤沉降,且满足精确性和适用性的要求。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||
|